Radical-Based Hierarchical Embeddings for Chinese Sentiment Analysis at Sentence Level
نویسندگان
چکیده
Text representation in Chinese sentiment analysis is usually working at word or character level. In this paper, we prove that radical-level processing could greatly improve sentiment classification performance. In particular, we propose two types of Chinese radical-based hierarchical embeddings. The embeddings incorporate not only semantics at radical and character level, but also sentiment information. In the evaluation of our embeddings, we conduct Chinese sentiment analysis at sentence level on four different datasets. Experimental results validate our assumption that radical-level semantics and sentiments can contribute to sentence-level sentiment classification and demonstrate the superiority of our embeddings over classic textual features and popular word and char-
منابع مشابه
Leveraging Auxiliary Tasks for Document-Level Cross-Domain Sentiment Classification
In this paper, we study domain adaptation with a state-of-the-art hierarchical neural network for document-level sentiment classification. We first design a new auxiliary task based on sentiment scores of domain-independent words. We then propose two neural network architectures to respectively induce document embeddings and sentence embeddings that work well for different domains. When these d...
متن کاملSentence Modeling with Deep Neural Architecture using Lexicon and Character Attention Mechanism for Sentiment Classification
Tweet-level sentiment classification in Twitter social networking has many challenges: exploiting syntax, semantic, sentiment and context in tweets. To address these problems, we propose a novel approach to sentiment analysis that uses lexicon features for building lexicon embeddings (LexW2Vs) and generates character attention vectors (CharAVs) by using a Deep Convolutional Neural Network (Deep...
متن کاملChinese Sentence-Level Sentiment Classification Based on Fuzzy Sets
This paper presents a fuzzy set theory based approach to Chinese sentence-level sentiment classification. Compared with traditional topic-based text classification techniques, the fuzzy set theory provides a straightforward way to model the intrinsic fuzziness between sentiment polarity classes. To approach fuzzy sentiment classification, we first propose a fine-to-coarse strategy to estimate s...
متن کاملRadical-level Ideograph Encoder for RNN-based Sentiment Analysis of Chinese and Japanese
The character vocabulary can be very large in non-alphabetic languages such as Chinese and Japanese, which makes neural network models huge to process such languages. We explored a model for sentiment classification that takes the embeddings of the radicals of the Chinese characters, i.e, hanzi of Chinese and kanji of Japanese. Our model is composed of a CNN word feature encoder and a bi-direct...
متن کاملA Deep Neural Architecture for Sentence-Level Sentiment Classification in Twitter Social Networking
This paper introduces a novel deep learning framework including a lexicon-based approach for sentencelevel prediction of sentiment label distribution. We propose to first apply semantic rules and then use a Deep Convolutional Neural Network (DeepCNN) for character-level embeddings in order to increase information for word-level embedding. After that, a Bidirectional Long Short-Term Memory netwo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017